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Transmission Switching
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 Modify network configuration using 
a switching heuristic to improve a 
desired network metric

 Drive optimization using line power 
loss, economic loss, outage 
frequency, etc. objective functions

 Maintain network health using 
equality/inequality constraints and 
tolerances

 Avoid local minima in the search 
space using stochastic methods and 
smart tempering in the search 
heuristic
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Transmission Switching
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 Exhaustive Search

 Binary Integer Programming

 Binary valued switch variables

 Simple modeling

 Configuration restricted to the binary decision vector

 Examples: genes in GA, switch vectors

 Many MIP problems can be converted into BIP

 Mixed Integer Programming

 Real-valued or integer valued variables

 More common in modern transmission switching

 Can be used to solve BIP problems

 Unique uses for MIP: multiple lines per edge or shunts per node
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Transmission Switching
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 Meta-Heuristic

 A combinatorial heuristic optimization that reduces search 
based significantly compares to exhaustive search techniques

 Most optimization strategies in the literature use some sort of 
meta-heuristic to drive optimization

 A compromise between problem dimensionality and solution 
speed

 Many of the heuristic procedures covered in this presentation 
date back at least 15 years, and as early as 1975 (genetic 
algorithm)

 Hyper-Heuristic

 As problem complexity becomes less predictable hyper-
heuristic procedures may allow us to optimize the algorithm 
to the model

 As of this date very little research has applied hyper-
heuristics to TS, most likely due to a much more increased 
overhead of computational resources

 At this point hyper-heuristic is a purely speculative procedure 
for automatic transmission switching but may be worth 
investigation in future research http://upload.wikimedia.org/wikipedia/en/timeline/

03a3ff29bf0feac18c4dfd6e344d764a.png



Approaches in Literature
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* - # of results on IEEEXplore; searched for <method name> & “network loss reduction” & “power, energy, & industry applications”

 Genetic Algorithm (57*)

 Swarm Optimization (28)

 Simulated Annealing (27)

 Evolutionary Algorithm (19)

 Colony Optimization (13)

 Tabu Search (5)

 Memory Based Heuristic (1)

 Immune Algorithm (1)



Network Fitness Criteria

 Objective Functions

 Loss Reduction

 Operation Expenditure

 Load Balancing

 Violation Penalties

 Service Restoration

 Network Overloads

 Voltage Profile

 Frequency Droop

 Reliability

 Constraints

 Line Current

 Voltage

 Phase Angle

 Generation Limitations

 Dispatch Control

 Topology

 Avoid islanding

(in most scenarios)

 Maintain connection of all 

generation and load
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Radial vs. Meshed Network

 Fast computation time

 Better convergence

 Simple power flow equations

 Radial networks are generally 

associated with distribution models

 More computationally intensive

 Possibility of lower convergence

 For compatibility with radial solvers 

meshed models can be converted to a 

radial model

 Create loop break point (LBP) dummy buses

 An extra calculation must be performed to 

readjust these dummy injections

 For our purposes we will perform OPF 

using conventional power flow 

software

 Meshed networks are more commonly 

seen in large transmission models
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Transmission Switching Methodology
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 Common Assumptions:

 Line Loss is the primary metric for network health, but may also 

be complimented by other measures

 In some instances meshed networks are reduced to purely radial 

networks, using loop edges as interchangeable switches, and 

ensuring radial topology

 Models are balanced 3φ, use generalized 1φ model in simulation

 DCOPF is used in order to reduce computation time

 Optimality is not always guaranteed, most solutions are feasible 

and healthier than the initial model

 Ensure all loads and generation are connected to the network on 

each iteration



Genetic Algorithm[1]
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 Objective Function: loss reduction

 Candidate pool consists purely of available, initially 

open lines (represented by tie lines in the model)

 The genetic string “chromosome” is represented by 

a vector of “genes”, binary values associated with 

the open/close position of each line in the 

candidate pool

a1 a2 a3 a4 a5 … aNChromosome

Genes



Genetic Algorithm[1]
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 Algorithm:

1. Seed Population

2. Reproduction

3. Crossover

4. Mutation

5. Calculate Fitness

6. Evaluate Convergence

 Return to 2. if convergence criteria is not met

a1 a2 a3 a4 a5 … aN

a1 a2 a3 a4 a5 … aN

b1 b2 b3 b4 b5 … bN

P(    ) = 0.5= index kk = round(rand(1,N-1))

¬a5

a1 a2 b3 a4 b5 … aN

b1 b2 a3 b4 a5 … bN



Genetic Algorithm[2]
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 Revisions:

 Crossover

Matched pair gene swapping is random per gene, no 

indexing limit or restriction is placed

 Previous crossover method favored front end gene elements

Mutation

 Adaptive mutation; mutation rate decreases as minimum line 

loss of the population converges

a1 a2 a3 a4 a5 … aN

b1 b2 b3 b4 b5 … bN
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Simulated Annealing[3][4]

 Objective Function: loss reduction

 Simulate the phenomenon of 

annealing as applied to materials, 

utilize entropic behavior to escape 

local minima

 In addition to generic SA a 

perturbation mechanism is 

introduced to guide the search using 

the knowledge of system topology, 

loop length and distance from switch 

determine the next switch selection

Slide 12

proportional 

size



Temp

Simulated Annealing[3][4]
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 SA Algorithm:

1. Initialize (temp, opt. config.)

2. Set iteration limit per 

temperature/iteration schedule

3. Move

 Decrease – Accept

 Increase – Accept/Deny 

depending on Temperature

4. Detect Convergence

 Criteria met - END

5. Reset iterations, decrease 

temp, go to 2.



Tabu-Search[5][6]
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 Objective Function: loss reduction

 Classical descent method of move, compare, update

 Tabu List provides a means of memorizing previous 

moves, moves that are “taboo” for new moves

 Perturbation mechanism is used to avoid local minima

 Add/Subtract Move - random branch exchange followed by a 

complete sequence of branch exchange with all lines in the new 

loop, remove the line leading to minimum losses

 Multiplicative Move - perform branch exchange on a random 

number of tie lines available for swapping

 Constrained Multiplicative Move - limit the number of 

multiplicative moves
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Tabu-Search[5][6]
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 Algorithm:

1. Initialize

 Tabu List length

2. Perform a move from the 
perturbation mechanism list

 If move exists, perform a another 
move

 Else add to tabu list and save as 
best candidate. If tabu list is full 
remove oldest member of list

3. Check for convergence

 Return to 2. if convergence is not 
satisfied

11 12 13 14

41 42 43 44

a1 a2 a3 a4

b1 b2 b3 b4

… … … …

n1 n2 n3 n4
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Differential Evolution[7]
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 Objective Function: loss 
reduction/ violation penalty

 DE is a modified 
Evolutionary Algorithm 
utilizing a unique mutation 
method

 Differential vectors form a 
mutant population

 A scaling factor is used to 
perturb mutant individuals to 
an even greater degree

 Scaling factor begins at 
F0=1.2, and scales based on 
the frequency of successful 
mutations in a generation



Differential Evolution[7]
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 Algorithm

1. Initial Population

 Create a population of configurations uniformly distributed on the entire parameter 
space

2. Mutant Population

 Randomly select 2-4 unique individuals, create a difference vector, multiply by scaling 
factor and merge it with a seed individual to create a mutant individual

3. Population Crossover

 Randomly pair a seed and a mutant.

4. Choose best candidate of the generation

 Determine the best candidate of the current generation. If the candidate is more fit 
than the best candidate of the parent generation, retain it. If not continue a new 
generation with the retained candidate.

5. Perform migration if population diversity is not met in initial population of a 
new generation

 Using the best candidate from the p a randomized mutation is performed to create a 
new population.

6. Convergence check/Update scaling factor

 Scaling factor is updated



Binary Particle Swarm Optimization
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



Binary Particle Swarm Optimization
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 Algorithm:

1. Initialize

 Create a population of randomly configured particles, nil 

velocity

 Calculate initial reliabilities

2. Perform feasibility check

 Infeasible position vectors are given a heavy penalty in 

their fitness

3. Update position and velocity vectors

4. Particle with maximum reliability is saved and 

analyzed for convergence



Ant Colony Optimization[8]
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 Objection Function: loss reduction

 Ant Colony Optimization models the 

hunt/gather/communicate dynamic search pattern 

of ants

 Distance and frequency

of successful moves

influence the movement

of each “ant”

 Good moves increase the

pheromonal value of a line



Ant Colony Optimization[8]
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 Algorithm:

 Initiate

 Individuals start out on a random loop element, pheromonal value of all loop 
elements is initially equal

 The authors also initialize the search with a super-ant using quick optimal 
path search tool

 Move

 The ant moves to another loop element based on two factors: pheromonal
value and distance. These two values are weighted through tuning

 A good move will update the pheromonal value of the line element, 
increasing the likeliness it will be utilized by other ants

 Eventually all the individuals create a unique radial network, the best of 
these individuals is selected as the heuristic spark for the next iteration

 The network configuration is perturbed on each iteration by randomly branch 
swapping several loop elements, the number of swaps is usually around 2-5% 
of the ant population

 New generation

 Stop search when convergence criteria is met for the best individuals



Economic Trans. Topology Control[9]
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 ObjFunc = (sum of load payments) – (generation gross margin) –
(merchandising surplus)

 Nodal price – evaluated using generation, load and network 
limitations

 Merchandising Surplus – a product of nodal price matrix and excess 
generation (gen – load)

 Switches available in the search space include only lines that are 
initially open

 Profitable and Un-Profitable lines are evaluated, Un-Profitable lines 
are selected as switch candidates

 Power transfer distribution factor (PTDF) and line outage distribution 
factor (LODF) are calculated to determine the economic effects of a 
line outage which in turn determine which line to cut in the next 
iteration.

 Stopping criteria is either unlimited or limited to I iterations



Other Methods
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 Immune Network -

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1193637

 Artificial Neural Network -

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=252662

 Rank Removal -

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4436100

 Fuzzy Reconfiguration -

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=756119

 Tabu-Mutation Hybrid -

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=756120

 Unbalanced Phase Swapping for Distribution Networks -

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4104582



Literature Methodology

% Reduction by Model
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GA SA Tabu DE ACO ETTC

16-bus 8.9 8.9

19-bus 15.7 15.8

30-bus 31.2

32-bus 31.1

33-bus 31.1

69-bus 39.7

70-bus 11.1

96-bus 11.7

IEEE-118 16.0 9.7

135-bus 12.7

148-bus 19.5

362-bus 79.0

1692-bus 19.4 33.4



Approach to the Problem
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 TransEx is pimarily transmission expansion tool, with some 
parameter restrictions can it be retooled for Optimal 
Transmission Switching?

 TransEx uses two heuristic methods for optimization: Limited 
Discrepancy Search and Randomized Discrepancy Bounded 
Local Search

 We will be comparing LDS and RDS with other methods

 Test Systems:

 IEEE-14 (debug purposes)

 RTS-96 73 bus system

 Modified RTS-96 73 bus system

 IEEE-118 (most common metric, for later benchmarking)

 Most methods presented performed switching optimization 
on radial distribution networks; we will be focusing on 
meshed networks



TransEx Configuration

 Existing Corridors:

 MaxLines = number of 

lines in model corridor

 MinLines = 0

 No new corridors, lines 

shunts, transformers, 

voltage upgrades, etc.

 Linear DCOPF

 LDS and RDS

 Static Line and Bus 

constraints

 Objective Functions:

 Load Shedding

 Line Overload

 Line Loss

 Economic Loss (future 

simulation)
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RTS-96 Modifications

 As established by O’Neill et al.[18] RTS-96 test system 

is frequently modified for optimal switching analysis

 Modifications:

 Remove line (11-13)

 Shift 480 MW from buses 14,15, 19, 20 to 13

 Add generation capacity to:

 Decrease thermal capacity of line (14-16) to 350 MW
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 (1) – 100 MW

 (7) – 100 MW

 (15) – 155 MW

 (23) – 155 MW



Results

LDS Results Time
(min)

Initial Loss
(kW)

Final Loss
(kW)

Reduction
(%)

IEEE-14 2.326 15.994 2.559 84.0

RTS_96 4.235 361.998 322.178 11.0

RTS_96m 5.791 423.915 377.522 10.9

RDS Results IEEE-14 2.312 15.994 2.559 84.0

RTS_96 7.623 361.998 350.192 3.26

RTS_96m - - - -
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